Can Computers Think And Understand?
Aziz Mugren
Faculty Mentor: Professor Barbara Montero
Department of Philosophy, College of Staten Island, CUNY

Abstract
Multiple perspectives have indicated that the thinking capacity of a machine can be determined. In reference to the Computing Machinery and Intelligence, Alan Turing, a Computer Scientist of the 20th century, believed that a thought experiment (The Imitation Game) tests enough that could help in determining the ability of machine thinking. The Scientist initiated the idea of the Turing Test in his 1950’s seminar paper to involve an interrogator, a human, and a computer. There was speculation that prior to 2000, computers could be capable of passing the Turing Test and thus be labeled as capable of thinking. In some cases, various kinds of bots have stretched towards that dream but not to the extent that the pioneer envisioned. Such bots just attained the power of getting clever ways in which they fooled the interrogators instead of acquiring humans' cognitive abilities. Many famous world thinkers have made big forecasts about humanity’s future based on the metaphor’s validity in determining the ability of machine thinking. This paper seeks to examine the concept of computational thinking and understanding of language through the Turing Test, assess how sufficiently the idea of passing the Turing test explores thoughts, and discusses the Mayan room argument. The Turing Test, which roughly corresponds with the Mayan room argument, is a concept of computer thinking and language understanding. The Turing Test is a strategy for determining whether computers are capable of thinking in the same way as humans using artificial intelligence (AI). Furthermore, a huge majority of scholars believe that a question about whether computers can pass the Turing Test is irrelevant. Rather than emphasizing how to persuade an individual, they are utilizing human discourse rather than a computer program. The most important and necessary focus should be on improving the efficiency and intuitiveness of human-machine interaction. Specifically, the Mayan/Chinese Room Argument aspires to disprove a particular hypothesis related to the role of computing light in human cognition. Conclusively, this paper shows how computers are capable of thinking but not understanding.

The Turing Test Methodology
The Turing Test is a technique used in making inquiries through artificial intelligence (AI) to determine if computers can think the same way as human beings. (Rey, 2012). Turing proposed that a computer can be understood to have artificial intelligence due to its ability to mimic human responses based on designated conditions. Originally, the Turing Test encompasses three main terminals, and they are all physically separated from one another. In the process of the test, a specific human function which is the questioner, another human function, and computer function, becomes the respondent. The questioner interrogates the respondents within an area of a specific subject through a particular context and format. After a number of questions or time length that is preset, an inquiry is made by asking the questioner to decide which among respondents was a computer or a human (Searle, 2012). Severally, the test is usually repeated. Whenever the questioner determines the correct answer in less or half of the run number of tests, that computer is regarded as one that possesses artificial intelligence since it was considered as “human” by the questioner terming it human.

The Mayan/Chinese Room Argument
The Mayan/Chinese Room Argument looks forward to refuting a particular concept concerned with computation's role in the light of human cognition. The Mayan Room Argument is set on three premises; semantic contents of minds, insufficiency and lack of semantics in syntax, and syntactical processes of implemented programs. Understanding or thinking a language needs beyond syntax (Kobis & Mossink, 2021). It would be to comprehend the thought and meanings of contents related to the symbols. The problem indicated with the man inside the room is the possession of syntax failure of understanding the accurate semantic content for not knowing Chinese. Besides, the computer program's purely syntactical operations are insufficient to ensure the semantic content presences that directly link to human understanding. Additionally, the implemented programs are described completely syntactically or formally, which widely explains the strength of a digital computer (Nelapati & Madavarapu, 2019). Purely, the operations of the computer manipulate traditional symbols, mainly recognized as 1s and 0s, which would be Chinese symbols or something different. It presents a basis for multiple realizability concepts as indicates the realization of a particular program in a large number of computer hardware encompassing individuals locked in Mayan Rooms or electronic computers or any amount of diverse hardware.

The argument that means syntactical processes among the implemented programs is dissimilar with the claim which seeks to propel the idea of mortality for humans. The idea of the program is recognized from its syntactical aspect. In this case, these appear to be merely incidental elements. They resemble an argument that tries to project the aspect of triangles being plane figures that are three-sided. The concept has nothing to offer in regard to the program qua program, and it only majors on the syntactical properties. In relation to the idea of a triangle, they may be blue or pink but fail to provide a strong basis in connection to triangle-ally analogously. In reference to such as focus, programs could be in Chinese Rooms or electronic circuits; however, that element alone does not offer anything concrete in relation to the program's nature. Additionally, to successfully create a machine that fully incorporates human cognition, one should not need to simulate human agent behavior. Still, the most important aspect is duplication of the cognitive processes that are underlying and influence behavior.

If you see this shape: "I am", followed by this shape: "I am", then produce this shape: "I am", followed by this shape: "I am", followed by this shape: "I am.", and so on...

Discussion
The Chinese/Mayan Room Argument is presented as a Turing Test refutation and connects to various logical behaviorism concepts. The Mayan Room I expresses the same kind of behavior like the "I" understood the syntax of the Chinese language but incidentally did not. The contrast can clearly be developed between the two incidences, the Chinese case and that of an English-speaking man providing answers for questions in the English language. Based on an outside observer’s perspective and point of view, the behavior of the man providing answers for the Chinese test is good, like the behavior expressed in answering English questions. For both, the "I" passes the Turing Test (Henderson, 2016). However, the two cases have a huge distinction. In the English case, the participant understands both the answers and the questions. On the contrary, in the Chinese case, the participant understands that the "I" is just a computer. This implies all forms of purely behavioral tests, including the Turing Test, are insufficient to differentiate what is genuine from behavior cognition and ensure successful simulation or imitation of cognition.

Conclusion
A huge majority of scholars believe that a question about whether computers can pass the Turing Test is irrelevant. Rather than emphasizing how to persuade an individual, they are utilizing human discourse rather than a computer program. The most important and necessary focus should be on improving the efficiency and intuitiveness of human-machine interaction. Specifically, the Mayan Chinese Room Argument aspires to disprove a particular hypothesis related to the role of computing light in human cognition. Many famous world thinkers have made big forecasts about humanity’s future based on metaphor validity. Furthermore, the process of downloading will never lead to immortality. Such an occurrence is not just owing to the lack of software that is associated with brain consciousness, but it also raises a significant worry that is both depressing and inspiring.

Acknowledgements
I would like to thank Professor Barbara Montero for her time, knowledge, help, contributions and guidance in this study which was a great and insightful experience.